modflow-devtools
Release 1.6.0.devO0

MODFLOW Team

May 15, 2024

INTRODUCTION

1 Installation

1.1 Installing modflow-devtools fromPyPI, .
1.2 Installing modflow-devtools fromsource e
1.3 Usingmodflow-devtoolsasapytestplugin.
1.4 Installing external model repositories e e e e

2 Fixtures

2.1 Keepable temporary directories e e e e e

2.2 Loadingexample models e e e e e e e e
3 Markers

3.1 Default markers e e e e e e e e e e e

3.2 Conditionally skipping testS i i e e e e e e e e e e e

33 ALASES e

4 Snapshot testing
4.1 Using snapshot fiXtures o . o o e e e e e e e e e e

5 Web utilities
5.1 QUETIES . . . o v o e e e e e e e e e e
52 Downloads L e e e e e e

6 LaTeX utilities

7 OS Tags
7.1 Tagspecification L. e e
7.2 Getting tags o o v e e e e e e e e e e e e e e e e e e
7.3 Converting tags . . . v v v vt e
7.4 Getting Suffixes L L e e e e e e e
8 MFZipFile
8.1 compressall e e e
9 timed

10 Testing CI workflows locally

11 Generating TOCs
11.1 Installing Node.js, npm and “doctoc™
11.2 Using doCtoC o o e e e e e e e e e e e

12 Indices and tables

LW W W W W

W

11
11
11
13

15
15

17
17
18

19

21
21
21
21
22

23
23

25

27

29
29
29

31

modflow-devtools, Release 1.6.0.dev0

The modflow-devtools package provides a set of tools for developing and testing MODFLOW 6, FloPy, and related
applications.

INTRODUCTION 1

modflow-devtools, Release 1.6.0.dev0

2 INTRODUCTION

CHAPTER
ONE

INSTALLATION

1.1 Installing modflow-devtools from PyPI

Packages are available on PyPi and can be installed with pip:

[pip install modflow-devtools

1.2 Installing modflow-devtools from source

To set up a modflow-devtools development environment, first clone the repository:

[git clone https://github.com/MODFLOW-USGS/modflow-devtools.git

Then install the local copy as well as testing, linting, and docs dependencies:

pip install .
pip install ".[lint, test, docs]"

1.3 Using modflow-devtools as a pytest plugin

Fixtures provided by modflow-devtools can be imported into a pytest test suite by adding the following to the
consuming project’s top-level conftest.py file:

[pytest_plug ins = ["modflow_devtools. fixtures"]

1.4 Installing external model repositories

modflow-devtools provides fixtures to load models from external repositories:
e MODFLOW-USGS/modflow6-examples
e MODFLOW-USGS/modflow6-testmodels
¢ MODFLOW-USGS/modflow6-largetestmodels

https://pypi.org/project/modflow-devtools/
https://github.com/MODFLOW-USGS/modflow6-examples
https://github.com/MODFLOW-USGS/modflow6-testmodels
https://github.com/MODFLOW-USGS/modflow6-largetestmodels

modflow-devtools, Release 1.6.0.dev0

By default, these fixtures expect model repositories to live next to (i.e. in the same parent directory as) the consuming
project repository. If the repos are somewhere else, you can set the REPOS_PATH environment variable to point to their
parent directory.

Note: a convenient way to persist environment variables needed for tests is to store them in a . env file in the autotest
folder. Each variable should be defined on a separate line, with format KEY=VALUE. The pytest-dotenv plugin will
then automatically load any variables found in this file into the test process’ environment.

1.4.1 Installing test models

The test model repos can simply be cloned — ideally, into the parent directory of the modflow6 repository, so that
repositories live side-by-side:

git clone https://github.com/MODFLOW-USGS/modflow6-testmodels.git
git clone https://github.com/MODFLOW-USGS/modflow6-largetestmodels.git

1.4.2 Installing example models

First clone the example models repo:

[git clone https://github.com/MODFLOW-USGS/modflow6-examples.git

)

The example models require some setup after cloning. Some extra Python dependencies are required to build the
examples:

cd modflow6-examples/etc
pip install -r requirements.pip.txt

Then, from the autotest folder, run:

[pytest -V -n auto test_scripts.py --init

)

This will build the examples for subsequent use by the tests. To save time, models will not be run — to run the models
too, omit --init.

4 Chapter 1. Installation

CHAPTER
TWO

FIXTURES

Several pytest fixtures are provided to help with testing.

2.1 Keepable temporary directories

Tests often need to exercise code that reads from and/or writes to disk. The test harness may also need to create test data
during setup and clean up the filesystem on teardown. Temporary directories are built into pytest via the tmp_path
and tmp_path_factory fixtures, however the default temporary directory location varies across platforms and may
be inconvenient to access.

modflow-devtools provides a set of fixtures to extend default pytest temporary directory fixtures’ behavior with
the ability to optionally save test outputs in a location of the user’s choice:

e function_tmpdir
e module_tmpdir

e class_tmpdir

* session_tmpdir

When pytest is invoked with a --keep <path> option, files created by tests using any of the above fixtures are saved
under the specified path, in subdirectories named according to the test function.

The fixtures are named according to their scope, and are automatically created before test code runs and lazily re-
moved afterwards, subject to the same cleanup procedure used by the default pytest temporary directory fixtures.
Functionally they are identical to the pytest-provided fixtures save for the behavior described above.

from pathlib import Path
import inspect

def test_tmpdirs(function_tmpdir, module_tmpdir):
function-scoped temporary directory
assert function_tmpdir.is_dir(Q)
assert inspect.currentframe().f_code.co_name in function_tmpdir.stem

module-scoped temp dir (accessible to other tests in the script)
assert module_tmpdir.is_dir()

with open(function_tmpdir / "test.txt", "w") as fl, open(module_tmpdir / "test.txt",
<"w") as f2:
fl.write("hello, function")
f2.write("hello, module")

https://docs.pytest.org/en/latest/how-to/tmp_path.html#the-tmp-path-fixture
https://docs.pytest.org/en/7.1.x/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session
https://docs.pytest.org/en/latest/how-to/tmp_path.html#the-default-base-temporary-directory

modflow-devtools, Release 1.6.0.dev0

There is also a --keep-failed <path> option which preserves outputs only from failing test cases. Note that this
variant is only compatible with function_tmpdir.

2.2 Loading example models

Fixtures are provided to find models from the MODFLOW 6 example and test model repositories and feed them to test
functions. Models can be loaded from:

¢ MODFLOW-USGS/modflow6-examples
e MODFLOW-USGS/modflow6-testmodels
e MODFLOW-USGS/modflow6-largetestmodels

These models can be requested like any other pytest fixture, by adding one of the following parameters to test func-
tions:

e test_model_mf5to06: a Path to a MODFLOW 2005 model namefile, loaded from the mf5to6 subdirectory of
the modflow6-testmodels repository

e test_model_mf6: a Path to a MODFLOW 6 model namefile, loaded from the mf6 subdirectory of the
modflow6-testmodels repository

e large_test_model: a Path to a large MODFLOW 6 model namefile, loaded from the
modflow6-largetestmodels repository

* example_scenario: a Tuple[str, List[Path]] containing the name of a MODFLOW 6 example scenario
and a list of paths to its model namefiles, loaded from the modflow6-examples repository

See the installation docs for more information on installing test model repositories.

2.2.1 Configuration

It is recommended to set the environment variable REPOS_PATH to the location of the model repositories on the
filesystem. Model repositories must live side-by-side in this location, and repository directories are expected to be
named identically to GitHub repositories (the directory may have a .git suffix). If REPOS_PATH is not configured,
modflow-devtools assumes tests are being run from an autotest subdirectory of the consuming project’s root, and
model repos live side-by-side with the consuming project. If this guess is incorrect and repositories cannot be found,
tests requesting these fixtures will be skipped.

Note: by default, all models found in the respective external repository will be returned by these fixtures. It is up to
the consuming project to exclude models if needed. This can be accomplished by:

e custom markers
* filtering with CLI options
* manually skipping with pytest.skip(reason="...")

* using model-finding utility functions directly

6 Chapter 2. Fixtures

https://github.com/MODFLOW-USGS/modflow6-examples
https://github.com/MODFLOW-USGS/modflow6-testmodels
https://github.com/MODFLOW-USGS/modflow6-largetestmodels
https://docs.pytest.org/en/7.1.x/example/markers.html
https://docs.pytest.org/en/7.1.x/reference/reference.html?highlight=pytest%20skip#pytest.skip

modflow-devtools, Release 1.6.0.dev0

2.2.2 Usage

MODFLOW 2005 test models

The test_model_mf5to6 fixture are each a Path to the model’s namefile. For example, to load m£5t06 models from
the MODFLOW-USGS/modflow6-testmodels repo:

def test_mf5to6_model (test_model_mf5to6):
assert isinstance(test_model_mf5to6, Path)
assert test_model_mf5to6.is_file()
assert test_model_mf5to06.suffix == ".nam"

This test function will be parametrized with all models found in the mf5to6 subdirectory of the MODFLOW-USGS/
modflow6-testmodels repository. Note that MODFLOW-2005 namefiles need not be named mfsim.nam.

MODFLOW 6 test models

The test_model_mf6 fixture loads all MODFLOW 6 models found in the mf6 subdirectory of the MODFLOW-USGS/
modflow6-testmodels repository.

def test_test_model_mf6(test_model_mf6):
assert isinstance(test_model_mf6, Path)
assert test_model_mf6.is_file()
assert test_model_mf6.name == "mfsim.nam"

Because these are MODFLOW 6 models, each namefile will be named mfsim.nam. The model name can be inferred
from the namefile’s parent directory.

Large test models

The 1large_test_model fixture loads all MODFLOW 6 models found in the MODFLOW-USGS/
modflow6-largetestmodels repository.

def test_large_test_model (large_test_model):
print (large_test_model)
assert isinstance(large_test_model, Path)
assert large_test_model.is_file()
assert large_test_model.name == "mfsim.nam"

Example scenarios

The MODFLOW-USGS/modflow6-examples repository contains a collection of example scenarios, each with 1 or more
models. The example_scenario fixture is a Tuple[str, List[Path]]. The firstitem is the name of the scenario.
The second item is a list of MODFLOW 6 namefile Paths, ordered alphabetically by name, with models generally
named as follows:

» groundwater flow models begin with gwf*
* transport models begin with gwt*

This naming permits models to be run in the order provided, with transport models potentially consuming the outputs of
flow models. One possible pattern is to loop over models and run each in a subdirectory of the same top-level working
directory.

2.2. Loading example models 7

https://github.com/MODFLOW-USGS/modflow6-testmodels
https://github.com/MODFLOW-USGS/modflow6-testmodels
https://github.com/MODFLOW-USGS/modflow6-examples

modflow-devtools, Release 1.6.0.dev0

def test_example_scenario(tmp_path, example_scenario):
name, namefiles = example_scenario
for namefile in namefiles:
model_ws = tmp_path / namefile.parent.name
model_ws.mkdir()
load and run model

Note: example models must first be built by running pytest -v -n auto test_scripts.py --init in
modflow6-examples/autotest before running tests using the example_scenario fixture. See the install docs
for more info.

2.2.3 Filtering

External model test cases can be filtered by model name or by the packages the model uses with the --model and
--package command line arguments, respectively.

Filtering by model name
Filtering models by name is functionally equivalent to filtering pytest cases with -k. (In the former case the filter is
applied before test collection, while the latter collects tests as usual and then applies the filter.)

For instance, running the test_largetestmodels.py script in the MODFLOW-USGS/modflow6 repository’s
autotest/ folder, and selecting a particular model from the MODFLOW-USGS/largetestmodels repository by name:

autotest % pytest -v test_largetestmodels.py --collect-only --model test1002_biscqtg_
—disv_gnc_nr_dev

collected 1 item

Equivalently:

autotest % pytest -v test_largetestmodels.py --collect-only -k testl002_biscqtg_disv_gnc_
—nr_dev

collected 18 items / 17 deselected / 1 selected

The --model option can be used multiple times, e.g. --model <model 1> --model <model 2>.

Filtering by package

MODFLOW 6 models from external repos can also be filtered by packages used. For instance, to select only large
GWT models:

[autotest % pytest -v --package gwt]

8 Chapter 2. Fixtures

https://modflow-devtools.readthedocs.io/en/latest/md/install.html

modflow-devtools, Release 1.6.0.dev0

2.2.4 Utility functions
Model-loading fixtures use a set of utility functions to find and enumerate models. These functions can be imported
from modflow_devtools.misc for use in other contexts:

e get_model_paths()

e get_namefile_paths()

These functions are used internally in a pytest_generate_tests hook to implement the above model-
parametrization fixtures. See fixtures.py and/or this project’s test suite for usage examples.

2.2. Loading example models 9

modflow-devtools, Release 1.6.0.dev0

10 Chapter 2. Fixtures

CHAPTER
THREE

MARKERS

Some broadly useful pytest markers are provided.

3.1 Default markers

By default, the following markers are defined for any project consuming modflow-devtools as a pytest plugin:
* slow: tests taking more than a few seconds to complete

* regression: tests comparing results from different versions of a program

3.1.1 Smoke testing

Smoke testing is a form of integration testing which aims to exercise a substantial subset of the codebase quickly enough
to run often during development. This is useful to rapidly determine whether a refactor has broken any expectations
before running slower, more extensive tests.

To run smoke tests, use the --smoke (short -S) CLI option. For instance:

[pytest -v -S

3.2 Conditionally skipping tests

Several pytest markers are provided to conditionally skip tests based on executable availability, Python package en-
vironment or operating system.

To skip tests if one or more executables are not available on the path:

from shutil import which
from modflow_devtools.markers import requires_exe

@requires_exe("mf6")
def test_mf6():
assert which("mf6")

@requires_exe("mf6", "mp7")

def test_mf6_and_mp7():
assert which("mf6")
assert which("mp7")

11

https://en.wikipedia.org/wiki/Smoke_testing_(software)

modflow-devtools, Release 1.6.0.dev0

To skip tests if one or more Python packages are not available:

from modflow_devtools.markers import requires_pkg

@requires_pkg(''pandas")
def test_needs_pandas():
import pandas as pd

@requires_pkg("pandas", "shapefile")
def test_needs_pandas():

import pandas as pd

from shapefile import Reader

To mark tests requiring or incompatible with particular operating systems:

import os
import platform
from modflow_devtools.markers import requires_platform, excludes_platform

@requires_platform("Windows")
def test_needs_windows(Q):
assert platform.system() == "Windows"

@excludes_platform("Darwin", ci_only=True)
def test_breaks_osx_ci(Q):
if "CI" in os.environ:
assert platform.system() != "Darwin"

Platforms must be specified as returned by platform.system().

Both these markers accept a ci_only flag, which indicates whether the policy should only apply when the test is
running on GitHub Actions CI.

Markers are also provided to ping network resources and skip if unavailable:
* @requires_github: skips if github.com is unreachable
e @requires_spatial_reference: skips if spatialreference.org is unreachable

A marker is also available to skip tests if pytest is running in parallel with pytest-xdist:

from os import environ
from modflow_devtools.markers import no_parallel

@no_parallel
def test_only_serially():

https://pytest-xdist.readthedocs.io/en/stable/how-to.html#identifying-the-worker-
—sprocess-during-a-test.

assert environ.get("PYTEST_XDIST_WORKER") is None

12 Chapter 3. Markers

https://pytest-xdist.readthedocs.io/en/latest/

modflow-devtools, Release 1.6.0.dev0

3.3 Aliases

All markers are aliased to imperative mood, e.g. require_github. Some have other aliases as well:
e requires_pkg -> require[s]_package

e requires_exe -> require[s]_program

3.3. Aliases 13

modflow-devtools, Release 1.6.0.dev0

14 Chapter 3. Markers

CHAPTER
FOUR

SNAPSHOT TESTING

Snapshot testing is a form of regression testing in which a “snapshot” of the results of some computation is verified
and captured by the developer to be compared against when tests are subsequently run. This is accomplished with
syrupy, which provides a snapshot fixture overriding the equality operator to allow comparison with e.g. snapshot
== result. A few custom fixtures for snapshots of NumPy arrays are also provided:

e array_snapshot: saves an array in a binary file for compact storage, can be inspected programmatically with
np.load()

e text_array_snapshot: flattens an array and stores it in a text file, compromise between readability and disk
usage

* readable_array_snapshot: stores an array in a text file in its original shape, easy to inspect but largest on
disk

By default, tests run in comparison mode. This means a newly written test using any of the snapshot fixtures will fail
until a snapshot is created. Snapshots can be created/updated by running pytest with the --snapshot-update flag.

4.1 Using snapshot fixtures

To use snapshot fixtures, add the following line to a test file or conftest.py file:

[pytest_plugins = ["modflow_devtools.snapshots"]

15

https://github.com/tophat/syrupy

modflow-devtools, Release 1.6.0.dev0

16 Chapter 4. Snapshot testing

CHAPTER
FIVE

WEB UTILITIES

Some utility functions are provided for common web requests. Most use the GitHub API to query information or down-
load artifacts and assets. See this project’s test cases (in particular test_download.py) for detailed usage examples.

Note: to avoid GitHub API rate limits when using these functions, it is recommended to set the GITHUB_TOKEN envi-
ronment variable. If this variable is set, the token will be borne on requests sent to the APIL.

5.1 Queries

The following functions ask the GitHub API for information about a repository. The singular functions generally return
a dictionary, while the plural functions return a list of dictionaries, with dictionary contents parsed directly from the
API response’s JSON. The first parameter of each function is repo, a string whose format must be owner/name, as
appearing in GitHub URLs.

For instance, to retrieve information about the latest executables release, then manually inspect available assets:

from modflow_devtools.download import get_release

release = get_release("MODFLOW-USGS/executables")
assets = release["assets"]
print([asset['"'name"] for asset in assets])

This yields ['code.json', 'linux.zip', 'mac.zip', 'win64.zip'].

Equivalently, using the get_release_assets () function to list the latest release assets directly:

from modflow_devtools.download import get_release_assets

assets = get_release_assets("'MODFLOW-USGS/executables")
print([asset["'name"] for asset in assets])

The simple parameter, defaulting to False, can be toggled to return a simple dictionary mapping asset names to
download URLs:

from pprint import pprint

assets = get_release_assets("MODFLOW-USGS/executables", simple=True)
pprint (assets)

This prints:

17

modflow-devtools, Release 1.6.0.dev0

{'code.json': 'https://github.com/MODFLOW-USGS/executables/releases/download/12.0/code.
—Jjson',

'linux.zip': 'https://github.com/MODFLOW-USGS/executables/releases/download/12.0/linux.
~zip',

'mac.zip': 'https://github.com/MODFLOW-USGS/executables/releases/download/12.0/mac.zip",

'win64.zip': 'https://github.com/MODFLOW-USGS/executables/releases/download/12.0/win64.
—zip'}

5.2 Downloads

The download_artifact function downloads and unzips the GitHub Actions artifact with the given ID to the given
path, optionally deleting the zipfile afterwards. The repo format is owner/name, as in GitHub URLSs. For instance:

from modflow_devtools.download import list_artifacts, download_artifact

repo = "MODFLOW-USGS/modflow6"
artifacts = list_artifacts(repo, max_pages=1, verbose=True)
artifact = next(iter(artifacts), None)
if artifact:
download_artifact(
repo=repo,
id=artifact["id"],
path=function_tmpdir,
delete_zip=False,
verbose=False,

The download_and_unzip function is a more generic alternative for downloading and unzipping files from arbitrary
URLs.

For instance, to download a MODFLOW 6.4.1 Linux distribution and delete the zipfile after extracting:

from modflow_devtools.download import download_and_unzip

url = f"https://github.com/MODFLOW-USGS/modflow6/releases/download/6.4.1/mf6.4.1_linux.
—zip"
download_and_unzip(url, "~/Downloads", delete_zip=True, verbose=True)

The function’s return value is the Path the archive was extracted to.

18 Chapter 5. Web utilities

CHAPTER
SIX

LATEX UTILITIES

The modflow_devtools.latex module provides utility functions for building LaTeX tables from arrays.

19

modflow-devtools, Release 1.6.0.dev0

20 Chapter 6. LaTeX utilities

CHAPTER
SEVEN

OS TAGS

MODFLOW 6, Python3, build servers, and other systems may refer to operating systems by different names. Utilities
are provided in the modflow_devtools.ostags module to convert between

¢ the output of platform.system()
* GitHub Actions runner. os tags
* MODFLOW 6 release asset OS tags

Only Linux, Mac and Windows are supported.

7.1 Tag specification

Python3’s platform.system() returns “Linux”, “Darwin”, and “Windows”, respectively.
GitHub Actions (e.g. runner.os context) use “Linux”, “macOS” and “Windows”.

EEINNT3

MODFLOW 6 release asset names end with “linux”, “mac” (Intel), “macarm”, “win32”, or “win64”.

7.2 Getting tags

To get the MODFLOW 6 or GitHub tag for the current OS, use:
e get_modflow_ostag()

e get_github_ostag()

7.3 Converting tags

Conversion functions are available for each direction:
¢ python_to_modflow_ostag(tag)
e modflow_to_python_ostag(tag)
e modflow_to_github_ostag(tag)
e github_to_modflow_ostag(tag)
e python_to_github_ostag(tag)

e github_to_python_ostag(tag)

21

modflow-devtools, Release 1.6.0.dev0

Alternatively:

convert_ostag(platform.system(), "py2mf") # prints linux, mac, macarm, win32, or win64
convert_ostag(platform.system(), "py2mf") # prints Linux, macOS, or Windows

The second argument specifies the mapping in format <source>2<target>, where <source> and <target> may
take values py, mf, or gh.

Note: source and target must be different.

7.4 Getting suffixes

A convenience function is available to get the appropriate binary file extensions for a given operating system, identified
by any supported OS tag, or the current operating system if no tag is provided. The return value is a 2-tuple containing
the executable and library extensions, respectively.

get_binary_suffixes() # get extensions for current 0OS

get_binary_suffixes("linux") # returns ("", ".so")
get_binary_suffixes("mac") # returns ("", ".dylib")
get_binary_suffixes("win64") # returns (".exe", ".dI11")

22 Chapter 7. OS Tags

CHAPTER
EIGHT

MFZIPFILE

Python’s ZipFile doesn’t preserve file permissions at extraction time. The MFZipFile subclass:
* modifies ZipFile.extract() to preserve permissions per the recommendation here
* adds a static ZipFile.compressall () method to create a zip file from files and directories

e maintains an otherwise identical API

8.1 compressall

The compressall method is a static method that creates a zip file from lists of files and/or directories. It is a conve-
nience method that wraps ZipFile.write(), ZipFile.close(), etc.

from zipfile import ZipFile
from modflow_devtools.zip import MFZipFile

def test_compressall(function_tmpdir) :
zip_file = function_tmpdir / "output.zip"

input_dir = function_tmpdir / "input"
input_dir.mkdir()

with open(input_dir / "data.txt", "w") as f:
f.write("hello world")

MFZipFile.compressall(str(zip_file), dir_pths=str(input_dir))
assert zip_file.exists()

output_dir = function_tmpdir / "output"
output_dir.mkdir()

ZipFile(zip_file).extractall (path=str(output_dir))
assert (output_dir / "data.txt").is_file(Q)

23

https://docs.python.org/3/library/zipfile.html
https://bugs.python.org/issue15795
https://stackoverflow.com/questions/39296101/python-zipfile-removes-execute-permissions-from-binaries

modflow-devtools, Release 1.6.0.dev0

24 Chapter 8. MFZipFile

CHAPTER
NINE

TIMED

There is a @timed decorator function available in the modflow_devtools.misc module. Applying it to any function
prints a (rough) benchmark to stdout when the function returns. For instance:

from modflow_devtools.misc import timed

@timed
def sleepl():
sleep(0.001)

sleepl() # prints e.g. "sleepl took 1.26 ms"

It can also wrap a function directly:

[timed(sleepl)()]

The timeit built-in module is used internally, however the timed function is only called once, where by default, timeit
averages multiple runs.

25

https://docs.python.org/3/library/timeit.html

modflow-devtools, Release 1.6.0.dev0

26 Chapter 9. timed

CHAPTER
TEN

TESTING Cl WORKFLOWS LOCALLY

The act tool uses Docker to run CI workflows in a simulated GitHub Actions environment. Docker Desktop is required
for Mac or Windows and Docker Engine on Linux.

Note: act can only run Linux-based container definitions. Mac or Windows workflows or matrix OS entries will be
skipped.

With Docker installed and running, run act -1 from the project root to see available CI workflows. To run all workflows
and jobs, just run act. To run a particular workflow use -W:

[act -W .github/workflows/commit.yml]

To run a particular job within a workflow, add the - j option:

[act -W .github/workflows/commit.yml -j build J

Note: GitHub API rate limits are easy to exceed, especially with job matrices. Authenticated GitHub users have a much
higher rate limit: use -s GITHUB_TOKEN=<your token> when invoking act to provide a personal access token. Note
that this will log your token in shell history — leave the value blank for a prompt to enter it more securely.

The -n flag can be used to execute a dry run, which doesn’t run anything, just evaluates workflow, job and step defini-
tions. See the docs for more.

27

https://github.com/nektos/act
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/engine/
https://github.com/nektos/act#example-commands

modflow-devtools, Release 1.6.0.dev0

28 Chapter 10. Testing Cl workflows locally

CHAPTER
ELEVEN

GENERATING TOCS

The doctoc tool generates table of contents sections for markdown files.

11.1 Installing Node.js, npm and “doctoc™

doctoc is distributed with the Node Package Manager. Node is a JavaScript runtime environment.

On Ubuntu, Node can be installed with:

sudo apt update
sudo apt install nodejs

On Windows, with Chocolatey:

[choco install nodejs

Installers and binaries for Windows and macOS are available for download.

Once Node is installed, install doctoc with:

[npm install -g doctoc

11.2 Using doctoc

Then TOCs can be generated with doctoc <file>,e.g.:

[doctoc DEVELOPER . md

This will insert HTML comments surrounding an automatically edited region, in which doctoc will create an appro-
priately indented TOC tree. Subsequent runs are idempotent, scanning for headers and only updating the TOC if the
file header structure has changed.

To run doctoc for all markdown files in a particular directory (recursive), use doctoc some/path.
By default doctoc inserts a self-descriptive comment
Table of Contents generated with DocToc

This can be removed (and other content within the TOC region edited) — doctoc will not overwrite it, only the table.

29

https://www.npmjs.com/package/doctoc
https://docs.npmjs.com/cli/v7/configuring-npm/install
https://nodejs.org/en
https://community.chocolatey.org/packages/nodejs
https://nodejs.org/en/download

modflow-devtools, Release 1.6.0.dev0

30 Chapter 11. Generating TOCs

CHAPTER
TWELVE

INDICES AND TABLES

* genindex
* modindex

¢ search

31

	Installation
	Installing modflow-devtools from PyPI
	Installing modflow-devtools from source
	Using modflow-devtools as a pytest plugin
	Installing external model repositories
	Installing test models
	Installing example models

	Fixtures
	Keepable temporary directories
	Loading example models
	Configuration
	Usage
	MODFLOW 2005 test models
	MODFLOW 6 test models
	Large test models
	Example scenarios

	Filtering
	Filtering by model name
	Filtering by package

	Utility functions

	Markers
	Default markers
	Smoke testing

	Conditionally skipping tests
	Aliases

	Snapshot testing
	Using snapshot fixtures

	Web utilities
	Queries
	Downloads

	LaTeX utilities
	OS Tags
	Tag specification
	Getting tags
	Converting tags
	Getting suffixes

	MFZipFile
	compressall

	timed
	Testing CI workflows locally
	Generating TOCs
	Installing Node.js, npm and `doctoc``
	Using doctoc

	Indices and tables

